Beechcraft King Air 350i

By Fred George fred_george@aviationweek.com
Source: Business & Commercial Aviation

“You know, in this area, this airplane operates so much cheaper than a jet and you're doing the same thing that the jets do. They can't get high, either,” Wuertz says. Since most of our assigned route would take us below the floor of either Philadelphia's or New York's Class B airspace, we would be limited to 200 KIAS in whatever we were flying.

Wuertz said it's taken him 90 min. to fly a jet from Teterboro, N.J., to nearby Farmingdale, Long Island, because of the congested airspace around New York City. “You can drive it [as quickly],” he quips.

At a weight of 12,700 lb., the aircraft cruised at 200 KIAS at 4,000 ft. in 17C conditions while burning 730 lb./hr. Once clear of the shadow of Philadelphia's Class B airspace, we accelerated to 250 KIAS.

“Easy on the power,” cautioned Wuertz, as we fine-tuned the power to avoid exceeding 100% torque. Pratt & Whitney Canada PT6A engines tend to be very sensitive in response to throttle movements at higher power settings. And the response is anything but linear. At a weight of 12,500 lb., the aircraft settled into cruise at 250 KIAS (266 KTAS) in 17C conditions while burning 1,020 lb./hr.

Passing Solberg and approaching the floor of New York's Class B airspace, we slowed back down to 200 KIAS. Wuertz entered the Runway 23 ILS approach into the FMS for reference purposes. The FMS automatically tuned the VOR/LOC receiver to 110.3 MHz for the ILS Runway 23 approach and the PFD displayed the 229-deg. inbound localizer course in the preview mode.

“831 Kilo Alpha, New York Approach, depart Solberg 040 vectors visual approach 23 Morristown,” we hear, basically aligning us on downwind for the runway. We also noted that changes in power and thus fuel flow resulted in simple time/distance/fuel remaining computations by the FMS. Unlike most jets, the FMS-3000 in this aircraft isn't sophisticated enough to consider expected climb, cruise and descent fuel burns and speeds when computing fuel remaining at the destination.

“It's just like a calculator. You punch it in and that's what it's telling you,” Wuertz explained.

On downwind, Wuertz switched on the aircraft's optional nose-mounted IR EVS camera. It's a microbolometer design that's great for sensing thermal images at night or in partial obscuration. The technology much improves situational awareness when flying “black hole” approaches, particularly where obstacles in the final approach path pose potential hazards.

New York directed us to descend from 4,000 to 3,000 ft. on downwind to Runway 23 and slow to 160 KIAS. Those 105-in. props function most effectively as rotating speed brakes, thus the aircraft easily goes down and slows down simultaneously.


Comments On Articles