Smallsats Finding New Applications

By Frank Morring, Jr.
Source: Aviation Week & Space Technology
August 19, 2013
Credit: NASA/JSC

Small, low-cost satellites are coming into their own as a niche industry serving commercial and government markets, building on the free development work provided by a generation of engineering students at places like California Polytechnic State University and Morehead State University in Kentucky.

It is now clear that smallsat technology is leapfrogging beyond the classroom. No longer just a hands-on teaching tool, miniature spacecraft are in serious development as weather monitors, Earth- and space-observation telescopes and a host of scientific probes.

“The genesis for a lot of the work has been in the universities, but we're now coming to a kind of a cusp, or a knee in the curve,” says Charles S. (Scott) MacGillivray, president of Tyvak Nano-Satellite Systems, a two-year-old startup that is gaining serious traction in the market for cubesat components, engineering services and launch integration. “We can start saying 'hey, we can do real missions with these.'”

Presentations at the 27th annual Small Satellite Conference at Utah State University here last week underscore MacGillivray's point.

During last year's conference Tyvak signed a $13.5 million NASA technology-development contract for the Cubesat Proximity Operations Demonstration (CPOD) mission, which will fly two 3U cubesats (each one comprising three 10-cm “cubes” that are each counted as one “U”) to orbit. Once there, the two tiny spacecraft will use a multi-thruster cold-gas propulsion system to fly a choreographed pattern around each other before docking, accomplishing the task with imagery, a cross-linked GPS signal and sophisticated software running on high-performance onboard processors.

Although most of the small-satellite and miniature instruments covered at this year's conference are still in development, the range of topics suggests the next few years will see a dramatic increase in “real missions” conducted with small spacecraft. Among them are “High-performance Spectroscopic Observation from a Smallsat;” “Star Tracker on a Chip;” “Simultaneous Multi-Point Space Weather Measurements using the Low-Cost EDSN CubeSat Constellation;” “Cicero—A Distributed Small Satellite Radio Occultation Pathfinder Mission,” and “TacSat-4: Military Utility in a Small Communication Satellite.”

Until recently, smallsats were considered too limited for meaningful work in space. Designers have been spending a lot of time working on ways to enhance the capabilities, and the payoff is starting to appear. Presenters from the Space Dynamics Laboratory here and NASA Ames Research Center in Mountain View, Calif., displayed dramatically different ways to fold a useful Earth-observation or astronomical telescope into cubesats for deployment on orbit. Miniature atmospheric sounders and other weather instruments were hot, as were propulsion systems.


Comments On Articles