Pilot Report Proves A400M’s Capabilities

By Fred George
Source: Aviation Week & Space Technology

The power-on approach to stall proved that the aircraft can be flown at 105-120 KIAS with flaps 4 for helicopter aerial refueling. We comfortably flew the aircraft at 110 KIAS at flaps 4 during the demo flight.

The fly-by-wire system also takes away most of the pilot workload associated with handling engine failures. At 13,000 ft., we set 100% power at 121 KIAS, pulled the outboard Engine 4 power lever to idle and watched as the FBW system compensated with aileron and rudder inputs to keep the aircraft in balanced flight. When both right Engines 3 and 4 were pulled back to idle and both left engines were at 100%, the FBW system maintained balanced flight. We needed only a slight left bank and nose-up attitude to climb the aircraft on heading at 121 KIAS and flaps 4.

After the air work, we returned to Toulouse for a normal, 3-deg. glidepath instrument landing system (ILS) approach to Runway 14R. Computed VREF landing speed for flaps 4 was 120 KIAS at a weight of about 222,000 lb. We added 5 kt. and bugged 125 kt. for the final approach speed.

Unlike a conventional Airbus, the A400M uses a decelerating speed schedule on final approach. The auto-throttle system does not completely slow the aircraft to VREF until it nears the threshold. The speed changes are not easy to notice because of the FBW's flightpath stability function.

We completed the first approach with a touch-and-go landing and turned onto a visual-flight-rules downwind pattern to the south. Just past abeam with the runway approach end, we turned a close-in base leg at 3,000 ft. AGL, 2,500 ft. above the airport. We extended the landing gear and flaps 4, maintaining altitude and 148 KIAS until we were 3 mi. from the threshold.

At that point, we reduced power, fully extended the speed brakes and began a 12-deg. plunge, simulating an assault landing. The aircraft was easy to control and the 3,000-ft./min. descent rate felt comfortable. At 500 ft. above the runway, we retracted the speedbrakes, increased thrust and transitioned to a normal 3-deg. ILS glidepath while slowing to 125 KIAS. We crossed the threshold at 60 ft. and began to pull back the thrust levers. Touching down just beyond the stripes, we flew the nose down to the runway, pulled back fully on the thrust levers and braked heavily. The aircraft stopped in about 1,600 ft. With practice, the landing roll could be shortened considerably.


For launch customers Belgium, France, Germany, Luxemburg, Spain, Turkey and the U.K., plus Malaysia, the A400M fills a niche below the C-17. As a strategic airlifter, it has more speed, range and payload than the C-130J, but less than the C-17. As a tactical airlifter, it has a steep-approach assault landing capability that no other Western heavy-lift transport can match. It can operate autonomously at austere airstrips with unimproved runways and unleveled ramps.

First delivery to the French air force is set for next month, to be used for military qualification. Two more are planned to be delivered to the French and one to Turkey by year-end. Production rates should increase in 2014 and beyond, depending upon European defense budget allocations. Longer term, because it is a European product with a European Aviation Safety Agency type certificate, the A400M could attract customers that do not want to buy U.S. or Russian products for political reasons.

The Atlas has some of the most capable avionics and flight controls ever fitted to a military transport. Its turboprop engines are unprecedented for their blend of power and fuel efficiency. This agile performer feels more nimble than older heavy-lift transports. But it is pricey. Divide the number of orders by the total investment and the unit price is a staggering $170 million-plus—almost twice the cost of a C-130J.


Comments On Articles