Pilot Report Proves A400M’s Capabilities

By Fred George
Source: Aviation Week & Space Technology

The conventional metallic fuselage is pressurized to 7.8 psi and can maintain a sea level cabin to 19,400 ft., and an 8,000-ft. cabin altitude to 37,000 ft. The cargo-bay floor has a track-and-roller system to facilitate loading and unloading. The carbon-fiber wing has a supercritical airfoil with a 15-deg. sweep at quarter chord. The T-tail empennage, also primarily composite, was chosen to keep the horizontal stabilizer above the wing wake.

Most Airbus aircraft systems are loosely based on those of the A380, but modified for the military mission. The hydraulic system has to two 3,000-psi channels powering the primary and secondary flight-control actuators, landing gear, wheel brakes, cargo door and optional hose-and-drogue refueling system. As with the A380, there is no third hydraulic system. Instead, there are two electrical systems. One is a set of dual-channel electrically powered hydraulic actuators, the other an array of electrically/hydraulically powered hybrid actuators. The dissimilar redundancy provides more protection against battle damage.

The landing gear has 14 wheels for low surface loading on soft runways. There are three independent main-gear struts in tandem on each side and, when parked, these can be adjusted individually to level the aircraft on uneven ground or make it “kneel” to facilitate on- and off-loading.

Aviation Week visited Airbus's main plant in Toulouse to fly the A400M. When I belted into the left seat of MSN6 manufacturer's serial No. MSN6, the final preproduction aircraft used for flight test, Chief Test Pilot Ed Strongman strapped into the right seat as my instructor. He has been with the program since 2000 and flew the A400M on its first flight in December 2009. Experimental test pilot Malcolm Ridley rode along as safety pilot, accompanied by flight-test engineers Jean-Paul Lambert and Thierry Lewandowski.

MSN6 had a 177,250-lb. operating empty weight, about 850 lb. heavier than the baseline production aircraft. With an 882-lb. payload, the zero-fuel weight was 178,132 lb. Partially filled with 55,115 lb. of fuel, ramp weight was 233,247 lb. and computed takeoff weight was 232,365 lb. Maximum takeoff weight for military logistics missions can be as high as 310,851 lb.

We planned to use the TP400's full takeoff rating, 11,065 shp. from each engine (see sidebar, page 40). Based upon using flaps 1, roughly 10 deg., V speeds were 110 KIAS for the V1 takeoff decision speed, 122 KIAS for rotation and 129 KIAS for the V2 engine-inoperative takeoff safety speed. Flap retraction speed was 148 KIAS. V speeds and takeoff field length were computed using a laptop—on production aircraft, they will be calculated automatically by a flight management system (FMS) performance computation function. The FMS also will double-check aircraft weight and center-of-gravity to compute the horizontal stabilizer trim setting for takeoff.

Our flight plan called for departing from Runway 14R at Toulouse, then flying 9.3 nm. southeast to the Toulouse-Blagnac radio beacon. Next, we would descend to 500 ft. above ground level (AGL) and fly low level to Garonne intersection near Noe and then on to Cazeres in the foothills of the Pyrenees. Weather permitting, we then would fly low-level eastward along the foothills for about 20 mi., pull up to medium and high altitudes for handling and cruise performance checks, then return to Toulouse for pattern work.

The weather was almost ideal for a demonstration flight. There were plenty of cloud layers starting below 1,000 ft. and going all the way to 25,000 ft.-plus. This would enable us to evaluate the aircraft in the low-visibility conditions in which it is designed to operate.

Strongman used the checklist on the electronic centralized aircraft monitor display to complete the pre-start checks. Firing up the engines was easy. We turned on the fuel pumps, rotated the engine start knob and then toggled the engine master switch from off to feather. The full-authority digital engine controls handled all other starting functions, including malfunction protection.

Comments On Articles