3-D Visualization Tool Aids Avionics Manufacturing

By Graham Warwick
Source: Aviation Week & Space Technology

“We take the CAD model into the VPM and put it in a format that does not need the software to run. We send an executable file, the engineers open it, inspect the model and determine what its manufacturability is by looking at it,” Fischer says.

The basic requirement is to perform virtually—via 3-D models–the manufacturability assessments previously conducted manually using physical prototypes. And “there are some unique things the system can do,” he says. These include an “augmented reality” mode that allows the user to change the 3-D model's scale “and go between the circuit cards to see things we can't catch physically.”

In augmented reality, the user's hand as represented in the virtual environment, its motion captured by cameras, can be varied in size from that of a large man to that of a small woman to help uncover potential accessibility problems.

The VPM system is now in day-to-day use with new designs. A “couple of hundred” designs have gone through the process and Rockwell Collins puts the return on its investment at 800% in terms of the number of hours required to fix manufacturability issues discovered virtually in the 3-D model versus physically in a hardware prototype.

Although the CAD data is reduced in resolution when it is converted to a 3-D model for visualization, “we have yet to run into a [manufacturability] problem [in the model] and there not turn out to be a correspondingly real problem [in the hardware],” says Lorenz.

Expanding the capability is next on the agenda. One direction is to take the now-manual assessment process and automate it by bringing in rules-based analysis software. “We are starting to think about how to take the capability to visually inspect a design and apply appropriate rules to get a level of automation where we find things we don't catch by manual inspection,” says Fischer.

Another direction is to pull more data into the visualization environment for use during design reviews, “information such as cost at the piece-part level, so we can see the implications of design decisions,” says Lorenz. “We are also doing some work at the conceptual design level. We would like to use VPM two or three times during the design cycle, but we are not there yet.”

The company also is looking at using VPM as a basis for developing 3-D work instructions for use on the factory floor, and for the technical documents used by field service representatives to troubleshoot problems. “Their key interest is getting down to the circuit-card level, while [in manufacturing] we work with boxes,” says Fischer.

Rockwell Collins also would like to expand the VPM beyond mechanical CAD data. “We want to do electrical, et cetera, in the same environment by pulling together various types of models,” says Fischer. “Anything you can do in PowerPoint, this can do better. But we need to beef up the electrical CAD side of the equation.”


Comments On Articles