U.S. Navy Sees Chinese HGV As Part Of Wider Threat

By Bradley Perrett, Bill Sweetman, Michael Fabey
Source: Aviation Week & Space Technology
January 27, 2014
Credit: U.S. Navy

In the view of the U.S. Navy, the Mach 10 test of a hypersonic glide vehicle that China conducted on Jan. 9 reflects its predictions of future warfare. If and when China can put the technology into service, Beijing will have a weapon that challenges defenses and extends the range of its ballistic missiles against land and sea targets, but its offensive application is still some years away and depends on solving tough challenges in targeting and guidance.

The hypersonic glide vehicle (HGV) test appears to mark a step beyond China's anti-ship ballistic missile (ASBM) program, featuring a slower, shorter-range maneuverable reentry vehicle (RV)—and may point to a second-generation ASBM.

To some analysts, the test underscores the need for the U.S. to field directed-energy weapons, since interceptor missiles may be unable to handle targets that appear with little warning and then maneuver at speeds above Mach 5. The U.S. is developing directed-energy weapons, but it is not clear when they will be needed or available.

China's HGV, called WU-14 by the Pentagon, was launched into space by an intercontinental ballistic missile (ICBM) booster, after which it returned to the atmosphere to glide at up to Mach 10. The test was conducted within China, says the defense ministry in Beijing. On Jan. 19, another object was test-launched from the same space base at Taiyuan, says analyst Richard Fisher of the Washington-based International Assessment and Strategy Center. The Jan. 9 test was first detailed by Bill Gertz of the Washington Free Beacon.

China's achievement must be placed in perspective. The U.S. Air Force tested a Mach 15 HGV, the McDonnell Boost Glide Research Vehicle, four times in 1966-68, with two successful flights. A follow-on that represented an operational design, the McDonnell Douglas Advanced Maneuvering Reentry Vehicle (AMaRV), was tested in 1979-80. The tests did not lead to an in-service weapon because of a 1980s focus on basing modes, arms control and missile defense.

A conventional RV has no control mechanism and descends through the atmosphere on a predictable ballistic trajectory. Ballistic warheads were virtually invulnerable until the 1980s, but since then, ground and naval defense systems based on interceptor missiles have demonstrated the ability to defeat progressively longer-range (and therefore faster) incoming ballistic warheads, although only with great difficulty.

An HGV can execute a pull-up maneuver after entering the atmosphere and approach its target in a relatively flat glide. It will therefore be detected later than a ballistic warhead; there is less time to react to it or to shoot at it again after a miss. Because the HGV can maneuver aerodynamically, it is much harder to hit—the defensive missile must be able to outmaneuver it —and it can be guided with precision onto its target. Gliding extends the missile's range, so that the relatively vulnerable mid-course phase of its flight can occur farther from the target and its defenses.


Comments On Articles